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Abstract. An approximate semiclassical quantization procedure for time-periodic Hamiltonians 
is formulated. which applies to motion near stable periodic d i u  of the system, corresponding to 
eUiptic islands of the periodmop, The theory involves CanonicaJ t r a n s f a d o n s  and the use of 
a particular dynamical Lewis invariant. The basic assumption in Ihe narrow-hlbe apcroximation 
is the localization of the quantal wavefunction inside the elliptic islands. 

1. Introduction 

The dynamics of atoms or molecules in strong laser fields, as of highly excited hydrogen 
atoms in microwave fields, has become an important subject of study, motivated by the 
increasingly more sophisticated laser facilities. Various time-periodic Hamiltonian systems, 
with H ( t  + T) = H ( t ) ,  may serve as mathematical models for analysing the details of 
the dynamics involved. In the present investigation we explore a class of time-periodic 
oscillators with one spatial degree of freedom. 

Generically time-dependent systems are known to show chaotic dynamics even for only 
one (spatial) degree of freedom [l]. A question of considerable fundamental interest is to 
what extent and in what way classical nonlinear phenomena, like chaos, reflect themselves 
in quantum mechanics [2]. The quantization of 'bundles' or 'cables' of vortex tubes as they 
occur. for example, near subharmonic resonances, i.e. when the winding frequencies of the 
trajectories become close to a rational multiple of the driving frequency of the system, is of 
particular interest to us in the present work. The original, nested vortex tubes of the forced 
linear oscillator are known to break up into a series of narrower ones if nonlinearities in the 
system are introduced. The question of how the rich variety of such subharmonic phenomena 
in classical mechanics is reflected in quantum mechanics does not seem to have attracted 
much attention. On the other hand it is quite well known that chaos is often approached 
through an infinite sequence of subharmonic motion (the period-doubling mechanism). 

A semiclassical EBK quantization of time-periodic Hamiltonian models, using an 
extended, four-dimensional phase space, has recently been introduced [24].  A narrow- 
tube approximation, based on this semiclassical EBK quantization procedure, has also 
been presented and numerically tested by the authors 1.51 to understand the quasi-energy 
contribution from the motion near the periodic centre of an elliptic island. Our leading- 
order narrow-tube approximation resulted in a formula similar (but not identical) to Miller's 
modified periodic orbit quantum condition [6] for energy eigenvalues of time-independent 
systems. Unfortunately, Miller's derivation (periodic-orbit theory) has not yet been applied 
to elliptic islands of time-periodic (Hamiltonian) systems, so a rigorous comparison between 
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our leading-order narrow-tube formula [ 5 ]  and periodic orbit results will have to wait. 
Meanwhile, we demonstrate in the present work that our quasi-energy formula (equation (31) 
in [5]), obtained from the narrow-tube approximation of the quantization conditions given 
by EBK theory [2], can also be derived from the more rigorous WKB theory (see chapter 6 in 
[l]). Such a derivation does not involve smooth geometrical objects in a four-dimensional 
phase space, but requires time-dependent canonical transformations and some more details 
of second-order, ordinary differential equations and Floquet mappings. 

Our aim is to formulate a local semiclassical quantization procedure-semiclassical 
narrow-tube (SCNT) quantization-applicable to elliptic islands of the relevant period 
(Poincare) map of the system phase space. A typical period map may show several elliptic 
islands corresponding to classes of subharmonic and harmonic responses of the excited 
oscillator. All these islands may support sequences of quasi-energies, which, together with 
contributions from other types of regular and irregular phasespace regions, combine to a set 
of quasi-energies for the whole system. We believe that such a semiclassical narrow-tube 
quantization can provide some impact on further development of the periodic-orbit theory 
for time-periodic Hamiltonian systems [l,  31. 

In section 2 the basic narrow-tube Hamiltonian is derived for a general system of one 
spatial degree of freedom. The resulting Hamiltonian represents a parametrically excited 
harmonic oscillator-the classical Hill oscillator. Details are worked out explicitly for the 
excited Duffing oscillator. The Lewis invariant, which is an integral of motion for the Hill 
oscillator problem, is presented in section 3. Section 4 introduces a final transformation 
of the basic narrow-tube Hamiltonian to its canonical form, which is then quantized in 
section 5. The resulting formula for the quasi-energies supported by elliptic islands of 
the phase-space period map is numerically tested in section 6, and the result is compared 
to those of semiclassical EBK theory and quantum theory. The applicability and certain 
limitations of the narrow-tube theory are discussed in the conclusions. 

In two appendices we draw attention to an amplitude-phase decomposition of the local 
motion about the periodic orbit centre of an elliptic island. Appendix 1 deals with the basic 
equations governing the behaviours of amplitude and phase functions which are relevant 
for the analysis of the Lewis invariant. Appendix 2 makes use of the amplitude-phase 
decomposition for analysing winding behaviour of tube-like motion appearing in the local 
period map of phase space. In this way a quantity like the classical angular winding 
frequency can be identified in the narrow-tube formula for the quantized quasi-energies. 

K - E  Thylwe and F Bensch 

2. Basic narrow-tube Hamiltonian 

This section describes the initial canonical transformations to a non-inertial system of 
coordinates with origin locked to a periodic motion of an elliptic centre. The period Tp 
r f  the centre motion may in principle be any rational multiple of the ‘external’ excitation 
period T .  The theory is outlined for one spatial degree of freedom and explicit results for 
the excited Duffing oscillator are given. 

2. I .  General formulation 

We consider a time-periodic Hamiltonian system of a single spatial degree of freedom 

where T = % / w  is the period of some unspecified excitation (forcing). The system may 
be strongly nonlinear in the canonical coordinate. q, but the Hamiltonian is assumed to be 
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quadratic in the canonical momentum p .  Hence, we may introduce a time-periodic potential 
V(q,  t )  according to the decomposition: 

H(P,  q ,  I )  = ; P z  + V(q, 0.  (2.2) 

The Hamiltonian equations of classical motion take the general form: 

. av  p = 
a4 

4 = P  (2.3) 

It is well known that excited Hamiltonian oscillators possess several periodic (harmonic, 
subharmonic) responses, some of which are stable and define so-called elliptic islands of 
the period map (mapping at a period [7]) of phase space. We now consider the immediate 
neighbourhood of an arbitrary periodic response (the centre of an elliptic island), and 
introduce a relative canonical coordinate I Q  and momentum AP through the transformation: 

q = q p ( f ) + h Q  ~ = 4 p ( f ) + I P  (2.4) 

where qp( t )  = qp(t  + T,) is the periodic centre motion and I is a book-keeping parameter. 
Several generating functions accomplishing a proper canonical transformation are possible 
to conshuct, with equivalent end results, but the most elegant one found by the authors [SI is 

The transformed Hamiltonian K ( I P .  I Q ,  t )  is given according to the general formula: 

(2.7) a Fz K ( I P ,  IQ, 1 )  = H ( P ,  4. t )  + - at 

where, with proper substitutions, we find 

a F2 - = -APqp(t)  + IQ jp ( t )  - $ 1 ) .  
at 

So far the Hamiltonian is obtained by exact transformations. The narrow-tube Hamiltonian 
pertaining to,the stable periodic centre motion qp( t )  is introduced next. We expand the 
original Hamiltonian up to quadratic terms in I ,  yielding 

Combining (2.7), (2.8) and (2.9). we obtain the narrow-tube limit of the transformed 
Hamiltonian, i.e. 

K ( I P ,  I Q ,  t )  Ko(IP,  I Q ,  t )  

(2.10) 
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with the Lagrangian of the centre motion given by 

K - E  Thylwe and F Bensch 

L p - - q p ( t )  . 2  - ff(Gp(t), qp(O9 t ) .  (2.1 1) 

We notice that the relevant period of the transformed Hamiltonian is Tp rather than T. The 
Lagrangian L,  appears as an explicit function of time alone and is totally irrelevant for the 
local equations of motion about the periodic orbit. In fact, trajectories in the neighbourhood 
of the centre motion satisfy a Hill-type differential equation: 

(2.12) 

The time-periodic coefficient of this linear differential equation generally has the same 
period Tp as the periodic centre motion. 

2.2. The forced Duffing oscillator 

Here we consider a time-periodic Duffing oscillator described by the Hamiltonian 

H D ( p .  q ,  t)  = i ( p z  + kq2 + $q4) - rq cos@) (2.13) 

which was considered in this context by the present authors in a recent paper [SI. 
The Duffing oscillator contains the linear force constant k, the excitation amplitude r 

and the strength of the nonlinearity s. The correct Hamiltonian corresponding to the relative 
motion is obtained from the time-dependent canonical transformation (2.5), and is given by: 

(2.14) 
A2 A4 

2 4 
K ( A P , A Q , t ) =  - ( ( P 2 + ( k + 3 ~ q ~ ) Q Z ) + A 3 ~ q p Q 3 +  - s e 4 -  L,. 

The centre motion Lagrangian, L,, depends only on the underlying periodic trajectory, 

~ , ( t )  = iq,” - ikq: - $4; + qpr cos(t) (2.15) 

and does not enter into the dynamical equations of motion. The resulting narrow-tube 
Hamiltonian for the Duffing oscillator (with A = 1) is 

K o ( P , Q , t ) =  ~ p Z + ~ ( k + 3 ~ q ~ ) Q 2 -  Lp. (2.16) 

The Hamiltonian equations of motion result in the Hill-type differential equation: 

Q + (k + 3sq;)Q = 0.  (2.17) 

Equation (2.17) describes the trajectories close to the periodic response qp(t) and is identical 
to the linear variational equation of standard stability theory. 

In order to explicitly quantize the narrow-tube Hamiltonian we invoke the so-called 
Lewis invariant [3,8,91. This quantity is closely connected to an amplitude-phase 
decomposition of the solutions of the Hill-type equation (2.12), as presented in some detail 
in section 3. 
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3. Dynamical Lewis invariant 

The Lewis invariant [8] is a constant of motion, which is expressed in terms of any solution 
Q(t)  to the Hill equation (2.12) and a class of amplitude functions p ( t )  as explained in this 
section (see also appendix 1). In our presentation we like to point out the less known fact 
that the classical Lewis invariant contains a free parameter (angular momentum parameter 
A) independent of our specification of the functions Q(r) and p(t) by initial conditions. 
Unfortunately, this arbitrariness conflicts with the idea that each closed curve of the period 
map belongs to a well defined value of the constant of motion (and of the quasi-energy). 
The problem, as we shall see, is solved here by requiring that the invariant set in (Q, h)- 
phase space of initial conditions, corresponding to a given value of the Lewis invariant, 
should be identical to the set of points produced by the (iterated) period map when applied 
to any point in the initial set. In this way, we single out a dynamical Lewis invariant 
with a specified parameter value A = A,. Note, however, that we have to make sure in 
the next section that the Lewis invariant fits into the canonical scheme, before the (WKB) 
quantization technique can be applied. We therefore discuss briefly the canonical Lewis 
invariant and its relation to area-preserving phase-space flows. 

To begin with, Hill’s equation (2.12) is written conveniently as 

Q + w i ( f ) Q = O  (3.1) 

with an assumed reflection-symmetric coefficient 

The amplitude function p(t ) ,  defining the fundamental solution matrix corresponding to 
(3.1) and, hence, any solution Q(t) ,  satisfies the Milne equation (see appendices 1 and 2). 

(3.3) 

with initial conditions p(0) = 1, p(0) = 0. 

class of initial conditions 
We now study trajectories described by (3.1) and which correspond to an unspecified 

Q(0) = eo@) and Q(0) = Po@) (3.4) 

later to be identified with a given constant of motion. The differential equations (3.1) 
and (3.3) differ by a single nonlinear term which renders their solutions Q(t)  and p ( t ) ,  
respectively, quite different behaviours in general. If, on the other hand, A assumes the 
particular value zero, the Wronskian W ( Q ,  p )  = Q p  - Q p  actually becomes a constant of 
motion. For general A this is not true. By multiplying the equations (3.1) and (3.3) by p 
and Q, respectively, followed by a subtraction, the result is 

(3.5) 

which shows that the Wronskian W ( Q , p )  is not a constant for A # 0. Accidentally, 
equation (3.5) can be immediately integrated with respect to time if it is multiplied by twice 
the Wronskian itself. For the right-hand member of (3.5) we make use of the identity 
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and arrive at the first integral 
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In other words, we have derived the Lewis invariant I :  

(3.7) 

where an extra factor of one half has been introduced by convenience. The value of the 
invariant depends on the angular momentum parameter A as well as the initial conditions for 
both Q ( t )  and p ( l ) .  To show this we write a solution Q ( t ) ,  satisfying initial conditions (3.4), 
in terms of the two independent principal solutions Q ( ' ) ( r )  and Q'2)(t)  of appendix 2: 

Q ( t )  = Q o @ ) Q " ' ( t )  + Po@)Q(*)@). (3.9) 

Consequently, we have 

I = ;(P&Y) + A ~ Q & ) ) .  (3.10) 

We would like a dynamical Lewis invariant which is uniquely defined by initial conditions 
of the trajectory. To eliminate the arbitrary A dependence we consider in more detail the 
invariant sets of points in phase space corresponding to different values of A in the Lewis 
invariant. Obviously, there exists a closed curve of initial conditions corresponding to a 
given value of the invariant I .  This initial cross-section curve is given, for example, by the 
parametrization: 

e0(a)  = ~- ]z /ZTcos (a )  p0(or) = -z/ZTsin(a). (3.11) 

In order to see the A dependence more clearly, it may be advantageous to express the set 
of initial points (3.11) in terms of one member (Qo(O), Po(0)) = (Qo(O), 0), say. In such 
a representation we have: 

Qo(a) = Qo(O)cos(a) Po(a) = -AQo(O)sin(or). (3.12) 

From an analysis of the phase-space period map in appendix 2 we find that the initial 
cross-section curve (3.12) becomes identical to the image set of repeated period mappings 
M o M o . . for the member (Qo(O), 0) only if A = Ap, so that the amplitude function p 
is T,-periodic. This means that the fixed-time cross sections of the vortex tube associated 
to the dynamical Lewis invariant are Tp-periodic. 

How can we now interpret the Lewis invariant? One aspect of Hamiltonian Rows that 
we should consider is Liouville's theorem on preservation of phase-space area [I] .  The 
area enclosed by the phase-space curve corresponding to a given value of the invariant I i n  
(3.10), at any fixed time t ,  is directly obtainable from (3.9) and (3.1 I )  by integrating over 
the possible values of the initial angle a. We find 

(3.13) 
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at any time. It is shown in appendix 2 that the fundamental solution matrix satisfies 
detQ(t) = I .  so the enclosed phase-space area is actually time independent, as it should. 
The relation (3.13) also suggests that the invariant I in (3.10) is not the cunonicul action 
integral of motion associated to the cross-section area of the tube, rather the combination 
ZA-’ is. The canonical Lewis invariant, which can be singled out from considerations of 
Hamiltonian period maps, will appear as the ‘optimal’ canonical formulation in section 4. 

In closing this section, we discuss how the parameter Ap has to be calculated. We first, 
as an illustration, consider the time-independent example where w i ( t )  = k in (3.1) and (3.3). 
Then there exists a real positive constant solution p = ( A / f i ) ’ / ’  of the Milne equation for 
any parameter value A. For this constant solution to satisfy the initial condition p(0) = 1, 
we require a particular value of A, namely 

A, = 45. , (3.14) 

The negative solution can be discarded without loss of generality. Only with this choice 
of Ap do we recover the trivial amplitude-phase representation of the simple harmonic 
oscillator solution. The value of the dynamical invariant I for this case is therefore the 
harmonic oscillator energy: 

I = l(P’ 2 o (a) + k Q i ( a ) )  (3.15) 

while the canonical Lewis invariant, discussed earlier in this section, is the oscillator action 
integral I/&. 

In the general problem, where w i ( t )  is time periodic, numerical calculations become 
important. One may still define a straightforward procedure for determining Ap based on 
the usual Newton-Raphson iteration for locating fixed points in the proper ( p .  ,j) Poincark 
surface of section. This is accomplished simply by starting with a given value A = 1 in 
the integration of the Milne equation for determining the periodic solution p~ by standard 
numerical routines. Then there is a multiplicative scaling relation between the solution p1 
and the proper one pp. One may verify from the Milne equation (3.3) that the relation is 
pp = &pl. Hence, from the initial condition on pp given by (A.10) in appendix 2, and 
the numerically located fixed point p j ( 0 )  in  the Poincar.6 surface of section, we find 

Ap = p;’(O). (3.16) 

4. Canonical narrow-tube oscillator 

Here, and in section 5, we can work out consequences of the fact that the classical, and 
quantal, Hill oscillators are non-trivially separable models. Let us consider the basic narrow- 
tube Hamiltonian &(P, Q ,  t )  in (2.10) (with A = 1) corresponding to a parametrically 
excited, classical oscillator written as 

Ko(P, Q, f) = ;IP* + o,Z(~)Q’I - L p .  (4.1) 

The Hamilton equations of motion result in the Newtonian equation of motion (2.12) with 
initial conditions required on P(= Q) and Q. It is desirable to transform the Hamiltonian 
in such a way as to make optimal use of the Lewis invariant. A canonical transformation 
to action-angle coordinates is possible to do, but we will obtain the same final expression 
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for the Hamiltonian by another conjugate pair of Cartesian-type coordinates ( R ,  S), defined 

K - E  Thylwe and F Bensch 

(4.2) 

by 

and 

(4.3) 

with p ~ :ing the periodic Milne solution corresponding to p ( 0 )  = 1, p = ~ and A = Ap 
in (3.3). as before. In terms of these new coordinates, the dynamical Lewis invariant takes 
the form 

I = A,3  where 3 = i [ R 2  + S2]. (4.4) 

Later we confirm that 3 is the canonical Lewis invariant. A time-dependent generating 
function Gz(R,  Q, t )  for the canonical transformation (4.2) and (4.3) is provided by 

We may also confirm that Gz(R, Q, 1 )  satisfies 

and 

After some straightforward analysis, the transformation of the Hamiltonian now gives 

acz KNT(R, S, t )  = Ko(P. Q, t )  + - 
at 

(4.6) 

(4.7) 

(4.8) 

and from (4.4) we see that the transformed Hamiltonian can also be written as 

K N T ( ~ %  I )  = Ap3/p2(t) - L p  (4.9) 

The latter is the optimal form of the narrow-tube Hamiltonian, Note that the correct 
canonical angle corresponding to the action variable 3 is the phase function 60 in the 
amplitude-phase decomposition of appendix 1, since Hamilton's equations of motion now 
give 

(4.10) 

in agreement with formula (A.4). 
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5. Semi-classical quantization 

Let us consider the quantum oscillator corresponding to the classical narrow-tube oscillator 
of the preceding section. Instead of using the original operator p, d and &, we start from 
the transformed classical Hamiltonian function K m ( R .  S,  t )  in (4.8) to find the operator 
equation: 

(5.1) 

with boundary conditions specified by 

$(S, r) + 0 as IS[ 00 (5.2) 

and I? and 2 and &T being the new quantum operators. The Scbrodinger equation can be 
constructed from (5.1) in the usual way with the substitutions: 

a a 
as a t  

and KNT + R--. S + S, I? + -ih- (5.3) 

In this problem, the eigenfunction $(S,  t )  satisfies the additional equation 

;[I?’ + S’I*(S, r) = x@(s, t )  (5.4) 

where 3 is an eigenvalue of the Lewis-invariant operator 6 f /Ap,  The latter eigenvalue 
problem is solved in the first step. The differential equation resulting from (5.3) and (5.4) 
is given by: 

a* 1 
- * (S ,  f )  + -[25 - S21qr(S, t )  = 0 a s2 h2 (5.5) 

which can be quantized using WKB methods for ordinary differential equations [l]. The semi- 
classical condition, which follows from the requirement that the wavefunction is bounded, 
can be expressed as 

(5.6) 

The well known result from the W K ~  quantization condition (5.6) is 

~ = ( n + i ) h  n = 0 , 1 . 2  , . . . .  (5.7) 

If we had started from action-angle coordinates we would have some problem to understand 
the boundary conditions (5.2) in terms of them. Of course, when the global oscillator 
problem is considered, the quantization condition (5.6) must be seen as an approximate one. 
There is an analogy to the problem of quantizing a time-dependent multi-well Hamiltonian 
system. A quantization in a single (local) well may be appropriate if surrounding barriers 
are sufficiently large. With this picture in mind we believe that the narrow-tube model is 
appropriate near the centres of well isolated elliptic islands of the Poincark cross section. 
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From (5.1), (5.3), (5.4) and (5.7) we obtain the simplified partial differential equation: 

which, without Further approximation, gives a local narrow-tube wavefunction of the form 

@(S, I )  = U ( S )  exp ( - i(n + 5) 1' dt') exp [ 1' Lp(t ')  dt'] (5.9) 

where U ( S )  represents a time-independent harmonic oscillator (WKB or exact quantum 
mechanical) wavefunction. We now turn to quantization in time and the notion of quasi- 
energies. 

So far we have not fully exploited the fact that the narrow-tube Hamiltonian (4.1) has 
a periodic coefficient d ( t )  = 0 2 ( t  + Tp)  and that we assume an underlying real, periodic 
Milne solution with the same period T,. When this is so, the phase of (5.9) is subject 
to an equal rate of change in any time interval of length T,. By the introduction of the 
classical winding Gequency U' (time-averaged angular frequency) in (A.22), which can also 
be written 

(5.10) 

with arbitrary t, we may further simplify the time dependence of the exponential factors 
in (5.9). Hence, introducing a corresponding constant energy E,, conjugate to the time 
variable, the phase increment after one period Tp takes the form: 

(5.11) 

Hence, from (5.10) and (5.1 I) ,  the so-called principal quasi-energy E, is given by the 
formula 

TP 
E, =hW(n  + $) - '1 L,(t')dt'. (5.12) 

TP 0 

The Floquet decomposition of the wavefunction [4,5] is a trivial matter in this case. It may 
be convenient to add and subtract a contribution &.t/h in  the time phase in (5.9), so that a 
simple phase factor in the wavefunction can be extracted out, leaving the remaining factor 
T,-periodic in time. Since the quantal phase increment of the remaining periodic Factor is 
defined only mod2n,  there is in fact a whole family of equivalent quantal quasi-energies 
according to the formula 

(5.12) 

with m = &O, & I , .  . . and n = 0, 1,2,. . . . 
Consequently, the quantal quasi-energy is the time-averaged rate of phase increase 

(mod 2n) multiplied by h .  Classically, the principal quasi-energy is also'interpreted as 
the time-averaged Hamiltonian KNT(S, I ) .  with the quantized value of the canonical Lewis 
invariant (5.7).  We expect the quasi-energy formula (5.12) to be valid for harmonic as well 
as subharmonic elliptic islands of the period map, since the trajectory period, rather than the 
Forcing period, enters naturally in the derivation of (5.12). One would like to expect this 
result to also be derivable from periodic-orbit theory, taking into account the modifications 
suggested by Miller [SI. 
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6. Numerical example 

In a numerical illustration of the narrow-tube quantization formula (5.12) we consider a 
particular Duffing oscillator (equation (2.13)) with parameters k = 0, s = 1, and r = 0.5. 
This system has previously been studied semiclassically by Bensch et al [4] using the 
EBK quantization method. In their table 1 [4] both semiclassical &EBK and quantal EQM 

quasi-energy results are compared i n  the form of quasi-angles 0 ETpfi(mod2n) with 
E = 0.015. 

The Poincar6 surface of section for the system is shown in figure 1. Two almost 
regular regions, separated by a chaotic one, can be identified. The stable, harmonic island 
contains 24 quasi-regular states [4], and the large chaotic region corresponding to some 
80 quantal states. Outside of the chaotic region there are an infinity of tube-like states 
which are without reach of the narrow-tube approximation. We focus our discussion on 
the narrow-tube quantization of the island corresponding to a stable periodic orbit centre 
at qP(O) = 1.40206476, with period Tp = T equal to that of the forcing. In table 1 
we report the principal (m = 0) quasi-energy results ENT(= &,,o) and compare them to 
the corresponding EBK and quantum mechanical quasi-energies converted from table 1 
in [4]. The periodic Milne solution used in the narrow-tube formula is obtained with 
Ap = 6.67 1 405 9. 

The first few quasi-energy states are excellently described by the narrow-tube formula. 
For larger quantum numbers, as the tubes get wider, the agreement gradually becomes 
worse. The realistic sizes of the tube cross-sections in the elliptic island &e illustrated in 

. .  . ,*’ ... - ......- .. .. _. .-..._ _ _  
,..__ ._:* 

-1 -0.5 0 0.5 1 1.5 
. .__ .... 

2 
-3 

Figure I. Phase-space period m p  of the excited Duffing oscillator (equation (2.13)) with system 
panmeters k = 0. s = I ,  and I = 0.5. Quantized quasi-energies supponed by the interior quasi- 
regular region are studied numerically by narrow-tube formulae, and results are compared in 
table 1. Quantized tori corresponding to n = 04, 10 and 20. centred on the IT-hannonic 
response, are illustrated in the figure. 
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figure 1 for quantum numbers n = 0-4, IO, 20. While the EBK quantization method actually 
uses a representative trajectory of each quantized tube, the narrow-tube quantization method 
does not. It needs merely the periodic-orbit centre and a single periodic Milne solution for 
all quasi-energy states contained in the elliptic island. 

K-E Thylwe and F Bensch 

Table 1. Some results of a nmw-rube quantiraiion oflhe quasi-energy for the system illustrated 
in figure I .  For selected values of the quantum number n and m = 0 in (5.12). these results &,q 
are compared to semiclassical EBK (EEBK) and quantal results (EQM) originally calculated in L41. 

n em %BK €QM 

0 -0,45750 -0.457497 -0.457497 
I -0.436 55 -0.436559 -0.436558 
2 -0.41560 -0.415635 -0.415630 
3 -0.39465 -0.394714 -0.394713 
4 -0.373 70 -0,373805 -0.373 806 
5 -0.35275 -0.352912 -0.352910 

IO -0.24800 -0.248593 -0.248591 
I 1  -0.22706 -0.227761 -0.227761 
12 -0.206 I 1  -0,206945 -0.206944 

- -  - - 

7. conclusions 

Sufficiently close to any stable periodic orbit the time-periodic Hamiltonian is separable in a 
rigorous sense. In a local narrow-tube quantization one has to impose boundary conditions 
on the wavefunction outside the elliptic island considered. The only obvious boundary 
condition is that the wavefunction vanishes in the exterior region, as is typical for low-lying 
energy levels of a local potential well. Hence, the approximate narrow-tube formula for the 
quasi-energy should be more accurate when applied to larger elliptic island, and when the 
unit quantum area of phase space becomes smaller. This was illustrated in our numerical 
example. If the conditions mentioned above are satisfied, the narrow-tube result still holds 
when, accidentally, the winding frequency becomes a rational multiple of 2n/Tp so that a 
continuous family of periodic orbits appears near the periodic centre motion. 

The boundary conditions used for the wavefunction in the narrow-tube quantization 
are no longer relevant if the centre motion is too close to bifurcation andlor if the vortex 
tube approaches the separatrix manifold. Unstable (hyperbolic) periodic orbits and the 
corresponding separatrices act as barriers, separating elliptic islands from each other. 

We would also like to emphasize that elliptic islands corresponding to harmonic and 
subharmonic responses are treated analogously in the semiclassical narrow-tube quantization 
procedure. The cable of vortex tubes appearing as a periodic geometrical object of period 
T can be seen as a single periodic tube of period T,. 
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Appendix 1. Amplitudephase decomposition and the Milne equation 

In this appendix we introduce an amplitude-phase decomposition of the solutions describing 
the trajectories winding along the vortex tubes. It is well known for time-independent 
harmonic oscillator systems that the oscillatory motion can be expressed in terms of action- 
angle variables, so that the canonical angle appears as the phase of the oscillation and 
the action variable determines the (constant) amplitude, Our goal in appendices 1 and 2 
for the paramehically driven harmonic oscillator is to find an analytic description of the 
phase development of the solution which can be defined as a canonical angle variable for the 
winding motion on the narrow tube. In appendix 1 we first introduce the general amplitude- 
phase substitution, where it tums out that the phase development of a solution is coupled 
to the amplitude function in a characteristic way. 

The differential equation describing the trajectories is given by equation (3.1) together 
with equation (3.2), which for later use explicitly assume a time-reflection symmetry of 
the periodic coefficient mi@).  Sometimes this symmetry can be achieved by a shift of the 
time origin, but the detailed understanding of what resmctions this symmetry requirement 
imposes on the periodic orbit is beyond the scope of the present paper. With an amplitude 
phase decomposition of any solution Q we write 

Q = p cos@ + a) with p(0) = 0 (A.1) 

and a is an unspecified initial phase. One can understand that the ansatz (A.l) makes 
sense if mi(?) > 0 for all times, since the solutions are then expected to oscillate quasi- 
periodically about the origin. The original differential equation (3.1) can now be replaced 
by an equivalent one obtained by substituting (A.l) into (3.1) 

Since we in one equation have replaced a single quantity Q(t )  by two new ones, p ( t )  and 
p(f), we have the freedom to impose an additional, arbitrary condition that can help us 
solve (A.2). The obvious choice of a subsidiary condition in the phase-amplitude approach 
is the relation: 

p++ zp+ = 0 (A.3) 

which is equivalent to the relation 

This is the simple relation between the angular frequency and the amplitude function for 
linear differential equations. Our freedom still allows us to specify the value of the angular 
momentum constant A later on. As a result of these manipulations, the exact equation (A.2) 
is replaced by the Milne equation: 

(A.5) 

for the amplitude function PO). This is a nonlinear equation similar to the radial part of 
Newton's law in cylindrical coordinates, and the solutions may behave quite differently 
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depending on the initial conditions. Of course, we would like the amplitude function to be 
well behaved and as slowly varying as possible. In many applications we would suggest 
an approximate, adiabatic solution of the Milne equation, i.e. 

K-E Thylwe and F Bensch 

which is periodic for all values of the 'angular momentum' parameter A. Note here that 
if &f) c 0 for all times, the positive adiabatic amplitude function corresponds to an 
imaginary value of the parameter A. 

The approximation (A.6) may not be sufficiently accurate when occasionally &t) 
becomes small. On the other hand, exact solutions may be very complicated functions 
of time in general. If there exist exact, periodic functions, like the approximate p&), one 
would be tempted to use them. At this stage in exploring the amplitude-phase decomposition 
we settle with the existence of a symmetric solution p(-t) = p(t )  (and b(-t)  = -b(t)). 
which is directly established by the time-reflection symmetry of the differential equation 
(recall equation (3.2)). As a consequence, a phase function ~ ( t )  can be defined from (A.4) 
which is subject to the odd symmetry: 

We note that the angular momentum parameter A is still arbieary. We need Floquet theory 
and the phase-space period map to find a formal condition on A. This will be dealt with 
in appendix 2. 

Appendix 2. The (narrow-tube) period Tp map 

In appendix 2 we use the exact amplitude-phase decomposition to derive a representation of 
the phase-space period map. Based on results from Floquet theory [7], the amplitudephase 
representation is simplified by using a periodic amplitude function p(t). The resulting phase 
function turns out to describe the correct winding motion on the tube. 

From the theory of linear differential equations, any solution of (3.1) (or (2.12)) can be 
described by only two independent ones and their derivatives. This fact makes it possible 
to construct a unique seoboscopic map of phasespace positions at times t = nT,, where 
Tp is the period of the underlying orbit q ( t ) ,  and n is any (positive and negative) integer. 

We take as independent solutions Q(fi(t) and Q(*)(t) ,  satisfying 

Q(''(0) = I and Q'"(0) = 0 

Q"'(0) = 0 and Q(')(O) = 1. 

The amplitude-phase decomposition of Q")( t )  is taken as 

Q'" = p  COS(^) p(0) = 0 

Q(') = p cos(p) - ~ p - '  sin(p) 

with the use of (A.4) and (A.7). The initial condition on p automatically implies the 
following companion conditions for the amplitude function: 

p(0) = 1 p(0) =o. (A.lO) 
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The remaining condition on @ (or A) is at our disposal and the purpose is to find a formal 
condition for specifying it. The amplitude-phase decomposition of Q(*)(t) now has to be 
taken as 

(A.l l )  

with the same amplitude and phase functions. Let us form the principal fundamental solution 
matrix Q by 

(A.12) 

It is easily verified, from equations (A.9) and (A,ll) ,  that 

detQ(t) = 1 (A.13) 

for all times. 
The Floquet theorem [7] for equations of the type (3.1) says that the fundamental solution 

matrix is subject to a linear period-Tp mapping, M ,  which we define from the initial time 
propagation as 

Q(Tp) = Q(O)M. (A.14) 

The uniqueness of this mapping implies that at any time t = nTp, the solution matrix is 
given by: 

QWp) = QOM" (A.15) 

where for negative n the mapping is composed by the inverse M-l .  From the explicit 
solutions and the initial conditions we find an expression for the map in terms of the 
amplitude and phase functions: 

M = Q V p )  

P o p )  cosrp(Tp) A-'p(Tp)sinrp(Tp) ( p(Tp) cosrp(T,) -Ap-'(Tp)sinrp(Tp) A-*b(Tp) sinrp(Tp)+p-I(Tp) cosrp(T,) 

(A.16) 

and 

M-'=Q(-Tp) 

P V p )  cosrp(Tp) -A-'p(Tp)sinrp(Tp) 
= ( -p (  Tp)cos~(Tp)+Ap-I  ( Tp)sinrp(Tp) ~A-lb(Tp)  sinrp( Tp) + p-' (T,) cosrp(Tp) 

(A.17) 

with the property 

d e t M  = I. (A.18) 



7490 

In order to obtain the expression for the inverse in (A.17) we have used the fact that 
p( - t )  = p( t ) ,  D(- t )  = b( t )  and cp(-t) = -cp(t) stated in appendix 1. 

The consistency of the expressions (A.16) and (A.17) has to be analysed next. The 
formal inverse of (A.16) is given by 
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(A.19) 

which, so far, differs in form from formula (A.17). Numerically, however, the matrix 
elements of (A.17) and (A.19) are the same, since the representation is exact for all 
parameters A. To make themformully identical we require 

p2(T,) = 1 and ,b(T,) = 0. (A.20) 

In other words, p( t )  has to be a periodic solution of the Milne equation. This requirement 
forces the angular momentum parameter to assume a specific value A = Ap. 

The narrow-tube mapping matrix can now be simplified and further decomposed in the 
following way: 

where 

(A.22) 

is the angular winding frequency of the map. The period-Tp map of phase-space points 
is seen to be a simple similarity transformation of a pure rotation (in the negative sense). 
Once the map has been established it  can be applied repeatedly to any point (Qo, PO) of 
phase space represented by a column vector according to: 

(A.23) 

where 

hence, generating a cross-section contour of a particular vortex tube. 
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